سفارش تبلیغ
صبا ویژن

حل یک معما 50 ساله در پردازش سیگنال ، قسمت دوم

الکساندر استویتچف ، دانشگاه ایالتی آیووا می گوید که این یکی از الگوریتم های "محبوب ترین و مفید" در اطراف است - حتی اگر بیشتر ما هرگز از آن چیزی نشنیده ایم.

 

 

اما اگر از تلفن همراه استفاده کرده اید ، اینترنت را مرور کرده یا به تصویر پزشکی احتیاج دارید ، از تبدیل سریع فوریه (FFT) بهره مند شده اید.

 

مبدل و معکوس آن (معروف به IFFT) از سال 1965 استفاده شده است. برای مثال ، در تلفن همراه شما از FFT برای تجزیه و تحلیل سیگنال دریافت شده از ایستگاه پایه (یا برج سلول) استفاده می شود. IFFT مشکل معکوس را حل می کند: سیگنالی را که تلفن شما به ایستگاه پایه می فرستد سنتز می کند .

 

در سال 1969 ، محققان یک نسخه مفید و کاربردی تر از FFT را که به نام Chirp z-transform (CZT) شناخته می شود ، تهیه کردند. اما هیچ کس نسخه کاملی از IFFT ارائه نکرده است. این یک معمای 50 ساله در پردازش سیگنال بود .

 

یعنی تا پاییز گذشته هنگامی که دو مهندس ایالت ایووا - استویچچف و ولادیمیر سوخوی در یک مقاله تحقیقاتی اعلام کردند که راه حل بسته ای را برای تبدیل zir تبدیل معکوس (ICZT) و الگوریتم سریع برای محاسبه آن ارائه کرده اند. ( این مقاله علاقه زیادی به جامعه پردازش سیگنال جلب کرده است و از ماه اکتبر بیش از 26000 دسترسی به آن رسیده است.)

 

اکنون استویچف - استادیار مهندسی برق و کامپیوتر و همچنین عضو مرکز برنامه های واقعیت مجازی دانشگاه - و سوخوی - مدرس مهندسی برق و کامپیوتر - نتایج جدید تحقیق را درباره الگوریتم آنها گزارش می دهد.

 

در مقاله ای که اخیراً توسط مجله علمی گزارشات ، یک نشریه تحقیقات طبیعت به صورت آنلاین منتشر شده است ، این دو نشان می دهند که الگوریتم آنها چگونه "در دایره واحد" کار می کند ، که به یک مورد خاص از پارامترهای آن اشاره دارد. (مقاله قبلی آنها فقط عملیات "خارج از دایره واحد" را برجسته می کند).

 

مقاله نحوه کار الگوریتم با اجزای فرکانس که توسط نقاط نمونه از دایره واحد در صفحه پیچیده تولید می شود را شرح می دهد. این نقاط یک کانتور تشکیل می دهند که به عنوان کانتور Chirp شناخته می شود. بر خلاف IFFT ، که فقط می تواند با نقاط نمونه برداری مساوی که دایره واحد را به طور کامل پوشش می دهد ، کار کند ، الگوریتم ICZT می تواند با کانتورهایی کار کند که فقط بخشی از دایره واحد را در بر می گیرد. همچنین می تواند با کانتورهایی کار کند که پیچیده شده و چندین چرخش بر روی دایره انجام دهند. این امکان استفاده از مؤلفه های فرکانس خاص (غیر متعامد) را فراهم می کند ، که یکی از محدودیت های اصلی IFFT را بالا می برد و می تواند به استفاده بهتر از طیف منجر شود.

 

مقاله مقادیر پارامتر را که الگوریتم از نظر عددی دقیق است و برای آن نیست ، مشخص می کند و نحوه تخمین صحت آن را به عنوان تابعی از پارامترها شرح می دهد. (نکته فنی: نشان می دهد که تکینگی های ICZT اندازه n مربوط به عناصر دنباله Farey از نظم n-1 است. این ارتباط جالب است زیرا توالی های Farey اغلب در تئوری اعداد ظاهر می شوند.)

 

مقاله نشان می دهد که ، در دایره واحد ، الگوریتم ICZT فقط با اعداد ممیز 64 بیتی با دقت بالایی به دست می آید و نیازی به دقت عددی اضافی ندارد ، و اجرای آن را آسان تر می کند. این گزارش حاکی است که الگوریتم می تواند به خوبی با الگوریتم موجود CZT برای انجام تجزیه و تحلیل سیگنال برگشت به عقب و سنتز سیگنال جفت شود. و این نشان می دهد که الگوریتم سریع است (در زمان O (n log n) معروف است).

 

استویچف گفت: "این الگوریتم عمومی تر از IFFT است ، اما همین سرعت را حفظ می کند."

 

این خبر خوبی برای مهندسین است که برای حل انواع چالش های پردازش سیگنال کار می کنند:

 

مهندسان ایالت ایووا در این مقاله نوشتند: "دامنه های کاربردی که می توانند از این مزیت بهره مند شوند ، شامل پردازش سیگنال ، الکترونیک ، تصویربرداری پزشکی ، رادار ، سونار ، ارتباطات بی سیم و موارد دیگر هستند."